

Fermilab Proton Driver II Study

J. A. Holmes ORNL

Fermilab's Need for a New Booster

- Planned experiments will require higher beam intensities:
 - Higher luminosity in Tevatron.
 - Fixed target neutrino studies at the main injector and booster.
 - Possible studies involving Kaons at the main injector.
- Present booster is the bottleneck.
 - Can get at most 5*10¹² protons per pulse.
 - Would like at least 2.5*10¹³ protons per pulse.
- Upgrade of present booster a bad option.
 - Present tunnel too shallow for necessary shielding.
 - Present tunnel (nearly circular) would limit shape of replacement.
 - HEP downtime would be unacceptable.
 - Cost of retrofitting estimated to be comparable to new booster.
 - Reuse of old magnets and rf would be constraining.
- Propose a new and improved booster ring. Written reports due in April.

Options for a New Booster

- Main specification:
 - 3.0*10¹⁴ protons/sec at 8 GeV
- Two options identified.
 - 8 GeV SuperConducting Linac.
 - 8 GeV Synchrotron.
- I am participating in study of the 8 GeV synchrotron option for evaluation of space charge effects.
- http://www-bd.fnal.gov/pdriver/8GEV/

Synchrotron Option: Preliminary Parameter List

Proton Driver Study II: Preliminary Parameter List

(Revised, January 30, 2002)

8 GeV Proton Synchrotron

Circumference (m)	474.2
Injection kinetic energy (MeV)	600
Extraction kinetic energy (GeV)	8
Protons per cycle	2.5×10^{13}
Repetition rate (Hz)	15
Protons per second	3.75×10^{14}
Average beam current (î A)	60
Target beam power (MW)	0.48
RF frequency (MHz)	53
Number of bunches	84
Protons per bunch	3×10^{11}
Peak dipole field (T)	1.5
Good field region	$4 \text{ in} \times 6 \text{ in}$
Dispersion in the straight sections	0
Transition γ_t	>> 9.5
Revolution time at injection, extraction (µs)	2.0, 1.6
Linac injection current (mA)	50
Injection time (µs)	90
Injection turns	45
Laslett tune shift at injection	0.25
Normalized transverse emittance (mm-mrad)	
Injection beam (95%)	3 π
Circulating beam (100%)	40 π
Longitudinal emittance (95%, eV-s)	
Injection beam	0.1
Circulating beam	0.2
Extraction bunch length σ_t (rms, ns)	1
Momentum acceptance	±1%
Dynamic aperture	$> 80 \pi$

Two Ring Options Considered. Racetrack Selected - More Useable Free Space.

Lattice Comparison

(February 28, 2002)

	REES_NEW		RITSON_NEW	
Shape	racetrack		triangle	
"Free" space	1.12 m × 40		$0.84 \text{ m} \times 48$	
	3.46 m × 20		$6.88 \text{ m} \times 12$	
	7.96 m × 14		$6.88 \text{ m} \times 12$	
Sextupoles	20 HS, 20 VS		12 HS, 12 VS	
Correctors in arc	2 per 3 QF, 2 per 3 QD		1 per 3 QF, 1 per 3 QD	
RF	= 21		= 15	
Extraction	yes (h or v)		yes (h or v)	
Injection	yes		yes	
Collimation	in the arc		in the arc or LS	
DA	250 π		350 π	
Δν νε. Δρ/ρ	< 0.016 at ±1%		< 0.005 at ±1%	
$\Delta\beta$ vs. $\Delta p/p$	< 2 m at ±1%		< 0.4 m at ±1%	
ΔD vs. Δp/p	≤ 0.7 m at $\pm 1\%$		≤ 0.14 m at $\pm 1\%$	
$\Delta \gamma_t \ \nu s. \ \Delta p/p$	< 1.3 at ±1%		< 0.4 at ±1%	
Δv vs. ampl.	0.205	0.062	0.183	-0.423
	0.062	0.347	-0.423	0.332
Space charge	$\Delta v = 0.15$ at injection		$\Delta v = 0.15$ at injection	

Space Charge Study: Injection.

- Inject 2.52*10¹³ protons into ring over 45 turns.
 - Strip foil injection of H⁻ coasting beam (ignore linac bunch structure).
 - $E_{kin} = 600 \text{ MeV}.$
 - deltaE = +- 500 keV.
 - Normalized linac emittance = 3-pi mm-mrad.
 - Paint to ring transverse emittance of 40-pi mm-mrad.
 - Bunching by adiabatic capture after injection. Ignore small rf during injection.
- Observe any emittance growth due to space charge during injection.
- Results dependent on fractional tunes

Emittance Growth is Sensitive to Tune More Than Lattice Type

Triangle: $Q_x = 12.14$, $Q_y = 12.36$

